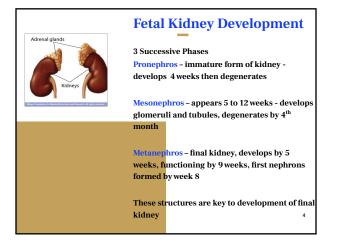
Genitourinary Disorders

Amy Mowery, NNP, MSN May 2023

Disclosures

The following speaker of this CME activity has no relevant financial relationships with commercial interests to disclose:


Amy Mowery NNP

🙈 Ascensio

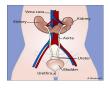
Objectives

Discuss normal embryologic development of genitonrinary system Describe common genitourinary disorders, clinical presentation, and management strategies Describe radiographic findings of common contouring and management

3

Fetal Kidney Development

Kidneys start in pelvis, migrate upward, rotate 90 degrees

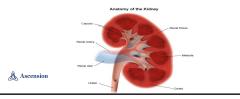

Failure to migrate up = pelvic kidneys

Abnormal ascent and rotation = horseshoe kidneys (kidneys pushed together and fused)

Adult kidney - size computer mouse

Bladder size - 32 weeks (10mls), term (40mls)

Ascension


Renal Anatomy

Cortex - outermost portion - glomeruli, proximal & distal tubules, collecting ducts of nephrons

Medulla - middle section - renal pyramids, straight portions of tubules, loop of Henle, vasa recta, terminal collecting ducts

Renal sinus and pelvis - innermost portion - renal pelvis and calyces, branching of renal vessels, nerves

Ureter - excretory duct, transports urine to bladder

Major Functions of Kidney

3 major functions: filtration, reabsorption, and secretion

- \checkmark Removal toxic waste products from blood
- ✔ Regulate electrolyte & water balance
- ✔ Regulate blood pressure
- ✔ Regulate body's pH
- ✔ Process vitamin D
- ✓ Produce erythropoietin to stimulate bone marrow
- ✓ Produce prostaglandins

Ascension

Urine Production

Begins at 9-10 weeks - major component of amniotic fluid

Fetus produces 2mls/hr at 20 weeks, 10mls/hr at 30 weeks, 17 mls/hr at 35 weeks

Fetal swallowing, breathing and urination regulate amniotic fluid

Polyhydramnios - usually caused by GI anomalies - renal dysplasia, nephrotic syndrome, inherited tubular defects

Oligohydramnios - renal agenesis or dysplasia, polycystic kidneys, low urinary tract obstruction

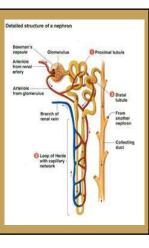
Specific gravity usually low (1.002-1.010)- inability to concentrate urine

In utero homeostasis is regulated by what?

What is normal urine output after birth?

Ascension

Nephron


Nephron **formation** begins - 8 weeks Nephrons develop until 35-36 weeks Maturation of nephrons continue into infancy

~1 million nephrons in adult kidney

Preemie - shortened tubules - continue to grow after birth

Filtrate flows through kidney modified in various tubule segments (excretion/absorption fluid & electrolytes)

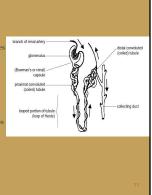
Ascension

8

Kidney Function

GFR= Glomerular Filtration Rate GFR - reflective of renal function GFR - low initially, increases postnatally 25% cardiac output filtered by kidneys (adult) Everything that affects cardiac output (CO) - affects kidneys (kidneys are sensitive indicators) Infants less than 34 weeks - low GFR

Kidney Function


Blood flow = filtration, driven by BP Blood flows through capillaries Plasma filtered through capillary walls to Bowman's Capsule -collects filtrate & enters tubule

Proximal tubule -60-70% reabsorb Na/water

Loop of Henle: reabsorption of Na, water, K+, bicarb, calcium (Loop Diuretics)

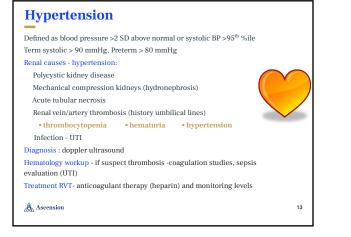
Distal Tubule: reabsorption Na/Aldosterone- causes water/Na reabsorption, K excretion Collecting tubules : ADH, reabsorption of water, urine concentrates Specific gravity: 1.002-1.010

Ascension

10

12

Acid Base Balance


Extracellular buffers: bicarbonate/ammonia Intracellular buffers: protein/phosphate Acid-base balance: LUNGS

> pH < 7.35 = acidosis: body (lungs) responds by increasing RR to decrease CO2

▶ pH > 7.45 = alkalosis: opposite

KIDNEYS - response to acidosis: tubules reabsorb bicarbonate, collecting duct secrete hydrogen

KIDNEYS -response to alkalosis: **excrete** more bicarbonate by decreasing hydrogen ion secretion from tubules

Types of Acute Renal Injury

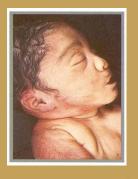
Prerenal - decreased blood flow to kidneys, kidneys normal (dehydration, asphyxia, hypotension, sepsis)

Intrinsic - injury to kidneys glomeruli and tubules - inflammation, toxins, drugs, damage from reduced blood flow (thrombosis), congenital anomalies

Postrenal - blockage below kidneys causing obstruction urine

Bilateral ureteropelvic junction (UPJ): involves ureters and renal pelvis Bilateral ureterovesical obstruction (UVJ): involves ureters and bladder Posterior urethral valves (PUV) - distal bladder, urethra

Labs - serum Cr >1.5 mg/dl, elevated BUN, hyperkalemia, metabolic acidosis Treatment - (underlying cause)


Potter's Sequence (Oligohydramnios syndrome)

Classic Potter's - bilateral renal agenesis, severe respiratory distress, fatal

Potter's sequence (triad)

- Clubbed feet
- Pulmonary hypoplasia
- Cranial anomalies related to oligohydramnios

Treatment - support respiratory status, follow renal function, dialysis, kidney transplant

Multicystic Dysplastic Kidney

Multicystic Dysplastic Kidney (MCDK) - congenital anomaly - renal cortex replaced by numerous cysts

usually <u>unilateral</u> disorder

- · dysplastic parenchyma with cysts resembles bunch of grapes
- · majority undergo partial or complete spontaneous involution over
- time

Ascension

- nonfunctional kidney
- bilateral condition incompatible with life
- normal kidney grows larger (compensatory <u>hypertrophy</u>) allowing child to maintain normal renal function

16

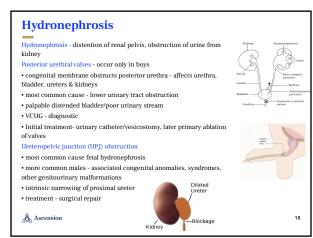
Polycystic Kidney Disease

Affects both kidneys, contain many small cysts

- usually autosomal dominant - one parent carries gene - 50% chance baby developing disorder

occurs in both children and adults - more common in adults (symptoms occurring middle age)

Autosomal recessive - appears infancy or childhood, very serious, progresses rapidly, results in end-stage kidney failure, generally causing death shortly after birth


- liver enlarged and fibrotic
- bile duct proliferation
- scattered cysts
- renal insufficiency

** An increase number of infant's are surviving with dialysis and transplant

17

Vesicoureteral reflux (VUR)

Retrograde passage urine from bladder into ureter & collecting system

- · reflux occurs if bladder outlet obstruction causes increased intravesical pressures
- common cause ureteropelvic junction (UPJ) (obstruction/narrowing where

ureter meets bladder)

common cause UTI

Diagnosis - Renal ultrasound - hydronephrosis

VCUG (Grading scale - UTD P1 to P3 - >48 hours)

UTD 1 (<15mm renal pelvis or central dilated calyces)

UTD 2 (>=15mm renal pelvis or peripheral dilatation calyces or >4=4mm dilated ureter UTD 3 (>10mm renal pelvis or any dilatation of calyces/ureter with oligo, abnormal bladder/parenchyma

Treatment - antibiotics, surgery

Ascension

Prune Belly Syndrome (Eagle-Barrett Syndrome)

Characterized by triad of findings

1) bilateral undescended testicles

 2) partial/complete lack abdominal muscles
3) urinary tract abnormality - large ureters, distended bladder, Vesicoureteral reflux (VUR)

Frequent UTIs, dislocated hips Incidence: 1/35,000-50,000 live births, 95% males

Treatment- optimize urinary drainage (vesicostomy) and later bladder reconstruction, manage renal insufficiency & antibiotic prophylaxis, respiratory support

Ascension

20

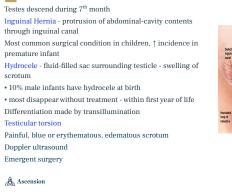
19

Bladder Exstrophy

Occurs 4-5 weeks - failure of abdominal wall to close

No known genetic link - if mother has child with it, chances increase further pregnancy

Extremely rare


Commonly have other GU anomalies, pelvic malformations

Treatment - surgical repair

Outcomes - frequent UTIs, urinary incontinence, and vesicoureteral reflux

Hernias and Such

22

Patent Urachus Fibrous remnant of canal - drains Umbilicus bladder & runs within umbilical cord Leaking urine from umbilicus Anterior High risk of UTI abdominal wall Urachus Diagnosis - abdominal ultrasound, VCUG Treatment - surgery (ligation) and Bladder antibiotics ADAM. Ascension 23

Hypospadias

Urethral opening located on ventral (underside) surface ^{bas} Incidence: 1/300 live births 10-15% have first degree relative Increases in severity when closer to body wall

Main types - glanular, penile, penosacral, perineal Epispadias - very rare (dorsal side) Chordee commonly present (downward curving, bending shaft)

Treatment - no circumcision, surgery - outpatient Urology

Ambiguous Genitalia

Sexual organs develop from same fetal tissue Presence of male sex hormones causes male organs to develop Absence of male hormones causes female organs to develop

Characteristics in females

- an enlarged clitoris, or what appears to be small penis
- concealed vagina

Characteristics in males

- hypospadias
- abnormally small penis urethral opening near scrotum
- ٠ absence both testicles in what appears to be scrotum

Ascension

Ambiguous Genitalia

Possible causes in females:

- congenital adrenal hyperplasia (CAH) cause adrenal glands make ٠ excess male hormones (androgens)
- mother taking progesterone (early stages of pregnancy to stop bleeding) .

Possible causes in males:

- · impaired testicle development genetic abnormalities or unknown causes
- impairment testosterone production (Leydig Cell Aplasia) ٠
- androgen insensitivity syndrome •
- enzyme deficiency impairs male hormone production (5 • Alpha-Reductase Deficiency)
- mother taking estrogens (during pregnancy) •

Ascension

26

25

Practice

Ultra filtration in the kidneys of a neonate is driven by:

- 1) Pressure
- Chemicals 2)
- 3) Osmosis

Urine formation occurs in which part of the neonate's kidneys?

- 1) The ureter
- 2) The nephron
- 3) The loop of Henle

Ascension

28

Practice

A significant drop in arterial pressure may result in the activation of :

- 1) The parasympathetic nervous system
- 2) The renin-angiotensin-aldosterone system
- 3) The renal prostaglandin system

Ascension

29

References

Blackburn, S.T. Maternal, Fetal and Neonatal Physiology: A clinical perspective (5th ed). St. Louis, 2016, Elsevier Saunders.

Karlsen, Kristine. The S.T.A.B.L.E Program: Pre-transport/Post Resuscitation Stabilization Care of Sick Infants. American Academy of Pediatrics; 6th edition, 2012.

Rogelet, Keri R., et al. Neonatal Certification. Review for the CCRN and RNC High-Risk Examination. Sudbury, MA: Jones and Bartlett Publishers, 2nd edition, 2015