Brain Death

Turning Tragedy into Opportunities

Samuel Windham, M.D. Chief Surgical Critical Care UAB

Introduction

Conflicts of Interest: None

- Goals:
 - Review the role of Legacy of Hope with process of organ donation
 - Show needs
 - Show how answering needs
 - Demystify the brain death process
 - Unique physiology
 - Brain death declaration
 - Steps to make declaration smoother process
 - Extend the gifts each donor has to give
 - ↑ Organs per donor
 - Grief processing and closure for families

Introduction

Outline

- Background
- The Need and the Answer to the Need
- Identifying the Patient and the Potential
- Physiology of the Brain Death Process
- Brain Death Declaration
- Organ Donor Management and Successes

Background

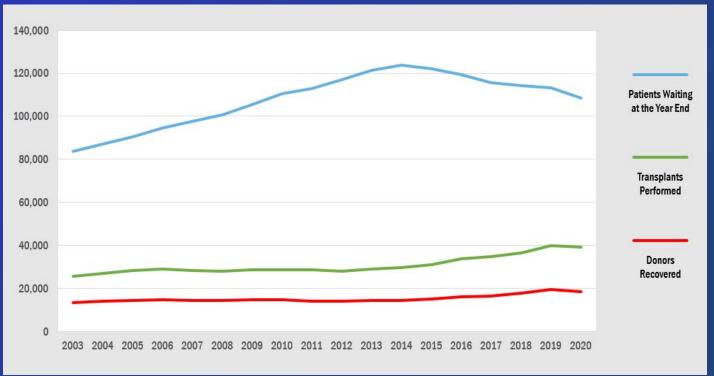
- Trauma Surgeon 2000 current
 - Anywhere from 3-7 call nights per month
 - 10 25 admits
 - 50 curse words / night; 1-2 punches at team by pt
 - Little "thanks"
- Surgical Intensivist 2004-current
 - Director of 20 bed ICU
 - Work on "one" to get "one" better
 - Receive "thanks"

Background

- AOC (Legacy of Hope)
 - Approached in February 2015
 - Describe their plans for Organ Recovery Center
 - 2 ICU Beds
 - 2 OR suites
 - Bring donors from around the state
 - Goals:
 - Increase organs per donor
 - Improve SRTR
 - Develop protocols to optimize donor management

Background

- Before LoH Recovery center
 - Drove to hospitals with coordinators
 - Broad range of capabilities at various sites
 - Various "buy-in" from physicians and teams
 - Impressed with the coordinators and abilities to adapt
 - Learned management on site
 - Some literature out there on management


Background •LoH

- Medical Director of LoH
 - 2 ICU beds
 - 2 OR's
 - Select ICU RN
 - Coordinators
 - Families!
 - 1 life □ 6-7 lives

The Need and Answer to the Need

- Challenges Faced:
 - 2.2 mil people die/yr in US
 - < 1% die in manner to allow organ donation
 - 110-115k waiting list
 - 100 added each day
 - 15-20 die each day

The Need and Answer to the Need

- Final Rule
 - All OPO will be graded on 2 metrics:
 - Donation rate—number patients donating / inpatient deaths
 - Transplant rate—number organs transplanted / total donors
 - Potential challenges calculating each number
 - If fall below certain thresholds, can lose your OPO coverage area! We need all the help we can get!
 - EVERY ONE OF YOU CAN MAKE A DIFFERENCE IN AT LEAST ONE STEP IN THIS PROCESS

The Need and Answer to the Need

- Steps to Close the Gap
 - Living Related Organ Donation—Locke
 - Xenotransplant
 - Organ 3-D building/ stem cell therapy
 - Donation after cardiac death
 - Challenges faced:
 - Declaring physician
 - Brain Dead Organ Donation

The Need and the Answer to the Need

- Brain Dead Organ Donation
 - Increase the registered donors
 - Increase the referrals
 - Increase family consent to donation
 - Preserve the chance for donation in potential donors
 - Optimize donor management

- Brain dead organ donation
 - Increase the referral
 - Timely referral
 - 1998 CMS timely referral rule
 - Notify OPO within 1 hour of 3 findings:
 - No pupil response
 - No cough
 - No gag
 - No response to pain
 - No spontaneous breaths
 - Or change to withdrawal for the goals of care
 - UAB / LoH has created a Cerner notification system

- Brain dead organ donation
 - Increase the family consent to donation
 - Designated requestor
 - Separate "bad news" from "approach"
 - Team can't care for the patient and then ask for organs—public concern for "they just wanted his/her organs"
 - Important in the grief process
 - Family witnessing and understanding the brain death exam
 - The Organ Alliance—key words
 - LoH SIM Course with UAB OIPS: brain death exam & family communication

- Brain dead organ donor
 - Preserve the chance for donation in potential donors
 - GOOD CARE
 - Brain death process is only one type of "injury" to organs
 - Sometimes harder to overcome a decrease in level of care
 - Turning, suctioning, "routine" care
 - "Non-survivable" so....
 - High UOP
 - Hypotension

- Brain dead organ donor
 - Preserve the chance for donation in potential organ donor
 - Catastrophic Brain Injury Guidelines
 - Maintain SBP > 90
 - Consider invasive monitoring and access
 - Vasopressor support
 - Maintain UOP: 0.5—1cc/kg/hr and < 300cc/hr
 - Fluid if behind
 - Vasopressin if DI
 - Maintain PaO2 > 100
 - Maintain pH 7.35 7.45

- Brain dead organ donor
 - Preserve the chance for donation in potential donors
 - CBIGs
 - Crit Care Med 2012 :
 - Adopt DMG 3.6 organs /donor □ >4 organs per donor
 - Would mean <u>70-80 more organs transplanted in state of Alabama</u> with our last year referrals
 - JAMA Surg 2014:
 - DMG for ECD 2.1 organs/donor □ 3 organs /donor
 - Would mean 150-180 more organs in state of Alabama

- Brain dead organ donor
 - Optimize donor management
 - PTC and myself
 - Successes

- Physiology and Pathophysiology
 - What happens as patient progresses to brain death
 - Defined in 90's, South Africa, animal models
 - EKG, PA cath, histology, hemodynamics, chemistries, etc
 - Brain death processes
 - Inflammatory changes
 - Circulatory changes (autonomic storm)
 - Metabolic changes
 - Hormonal changes

- Physiology and Pathophysiology
 - Inflammatory
 - Cytokines, Interleukins, inflammatory pathways
 - TNF, IL-6, IL-8, IL-10, IFN-γ
 - Vasodilation
 - Third spacing
 - Coagulopathy
 - Decrease organ function (donor & recipient)
 - Blood brain barrier disruption (GSW head)
 - Release tissue factor
 - Bleed □ DIC

- Physiology and Pathophysiology
 - Circulatory Changes

 - Pre-herniation: fluid shifts to capacitance vessels and lungs
 - Herniation:
 - ↑↑ SVR
 - ↓ C.O.
 - MV regurg □ ↑ LA pressure □ ↑↑ pulm edema
 - Post-herniation: circulatory collapse following catechol surg from cardiac dysfunction and catechol depletion

- Physiology and Pathophysiology
 - Histology/Organ changes
 - Heart fibers damage as result of catechol surge and calcium shifts
 - Contraction band necrosis
 - Mononuclear infiltrate
 - Lungs develop significant edema
 - Kidneys develop ATN
 - Hypoperfusion
 - Energetics
 - Worsened with hypovolemia due to DI

- Physiology and Pathophysiology
 - Metabolic changes
 - Hypothermia
 - Acidosis
 - Renal dysfunction
 - Hyperchloridemia
 - Hypocalcemia
 - Hypophosphatemia

- Physiology and Pathophysiology
 - Hormonal changes—whole separate lecture but focus on what you see
 - No perfusion of brain results in no hormones output from hypothalamus/pituitary
 - So all hormones will disappear over time, depending of half life

- Physiology and Pathophysiology
 - Hormonal changes
 - Vasopressin
 - Acts on 3 different receptors in the body
 - Vasomotor tone, platelets, uterine
 - Anterior pituitary
 - Renal receptor
 - Half life 10 35 min
 - Why UOP often picks up at brain death
 - Start infusion early, helps stability and prevent DI
 - I recommend use during apnea test

- Physiology and Pathophysiology
 - Hormonal changes
 - Thyroid
 - Disappearance complex—different forms and interactions
 - Usually start drip in order to stabilize hemodynamics and restore cellular energetics
 - Thyroid replacement usually increases ability to transplant heart and lungs

- Physiology and Pathophysiology
 - Hormonal
 - Stress Hormones: Glucocorticoid/Mineralocorticoid
 - Half life of ACTH 10 min, so within hour of brain death, level low to none
 - Steroids replacement in donor management: helps with adrenal insufficiency and inflammatory changes of brain death
 - In general 1gm load then 1mg/kg BID
 - Addition of steroids probably associated with organ improvement

- Various Injuries
 - Overdose
 - Trauma
 - Hypoxia
 - Cardiac arrest
- Common Result: complete and irreversible cessation of brain function
 - Cerebrum only—coma
 - Brainstem only—locked in syndrome

- Brain death declaration
 - AL: 2 physicians required
 - Cause of brain death must be known
 - If unknown further testing should be undertaken
 - If unknown, prudent to allow 6-12 hours between exams
 - No confounding meds
 - Testing for levels of meds in system—<u>pitfall UDS</u>
 - 3.5 5 half lives for medication clearance or reverse med
 - Temp— > 36.5
 - SBP adequate > 100mmHg

- Brain death declaration
 - Family present helps—having family present has been shown to increase the consent rate
 - Improves understanding and acceptance
 - Allows them ability to visualize absence of function
 - Talk them thru the testing
 - Educate about spinal reflexes
 - Explain the steps of the exam

- Brain death declaration
 - Corneal: no blink in response to stimuli
 - Pupil: no constriction with light
 - Doll's Eye: brain death, eyes move with nose. Non-brain dead, the eyes move opposite of direction of head turn/stay fixed on ceiling
 - Gag: No gag with pharyngeal stimulation
 - Cough: No cough with deep suctioning

- Brain death declaration
 - Occulovestibular—there is no fast-twitch eye movement with temp stimulation of vestibule
 - 50cc in each ear
 - Head of bed 30 degrees
 - COWS
 - Watch for response up to 1 minute per ear

- Brain death declaration
 - Apnea:
 - Disconnect from vent; tubing with O2 flowing into ETT
 - Serial ABG to eval for increase in CO2 by 20 (CO2 ↑ 4mmHg for every 1 minute—in most)
 - Absence of any attempt for breath
 - Keys:
 - Hemodynamic support in place/avail
 - If hypovolemia, 500-1000cc prior to exam
 - Pre-oxygenate 5-10 min
 - Tube size / Flow rate of O₂

- Vision to build recovery center started to develop in 2014/2015
 - 58 OPO's
 - ~5 had recovery centers
 - No recovery centers attached to hospital
 - Joined in 2015
 - Develop protocols for management in the recovery center
 - Improved organs / donor
 - Improved Observed to Expected metric for each organ
 - Lungs SRTR 0.3 0.4
 - Heart SRTR 0.7 0.8
 - Liver SRTR > 1
 - Kidney SRTR 0.85 0.92
 - Pancreas SRTR 0.7

- Completed early 2016
- Immediately saw benefits of attached donor recovery center
 - Allowed closer following of donors
 - Allowed direct interaction between PTC and intensivist
 - Allowed real time teaching for management and development of protocols
 - Faster time to complete procedures needed for each donor
 - Select group of bedside ICU nurses that had interest in transplantation

- Pulmonary
 - 2016 began the creation of the pulmonary protocol
 - Started here as this was lowest yield organ for our OPO
 - Protocol Keys:
 - Work for variety of problems:

Atelectasis	Plugging	Edema
Inflammation	Pulmonary contusions	Pneumonia
Reactive airways		

- Simple
- Had to work in different settings, ventilators, varying support

- Pulmonary
 - Data needed at start

Height:	cm	Weight:	kg	BMI:
In:cc		Out:	_cc	
pH		MV		pCO2

Pulmonary

STEPS

- Calculate the ideal body weight in kg

 Ideal weight = (Patient weight x 25) ÷ Patient BMI
- 2. Tidal Volume _____cc

Ideal body weight (Step 1) X 7cc

3. Calculate Minute Ventilatory Need ______L/min

Minute Ventilatory Need = (current minute ventilation x Current CO2) ÷ Desired CO2

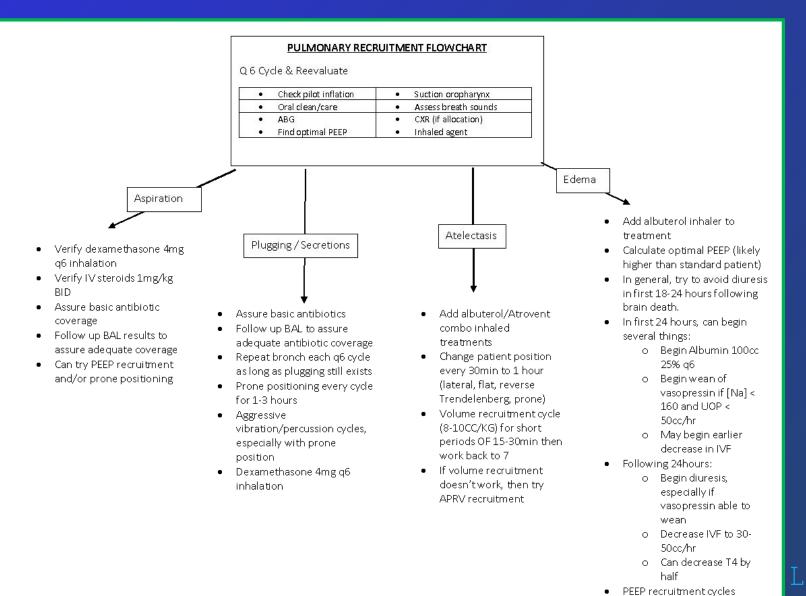
4. Calculate Vent Rate ______

Vent Rate = (Minute Ventilatory Need ÷ Tidal Volume) x 1000

5. Set ventilator with settings determined in # 2, #3, #4

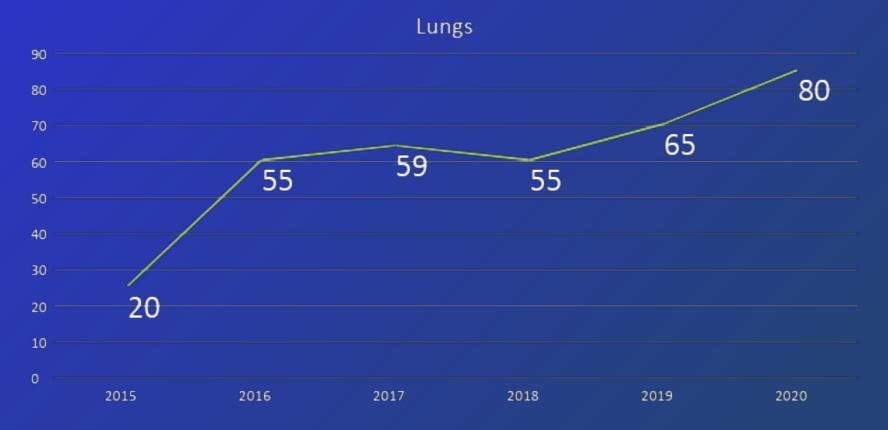
AC / ventilator rate / tidal volume / PEEP / FiO2

6. Slow the flow so that I:E = 1:1



Pulmonary

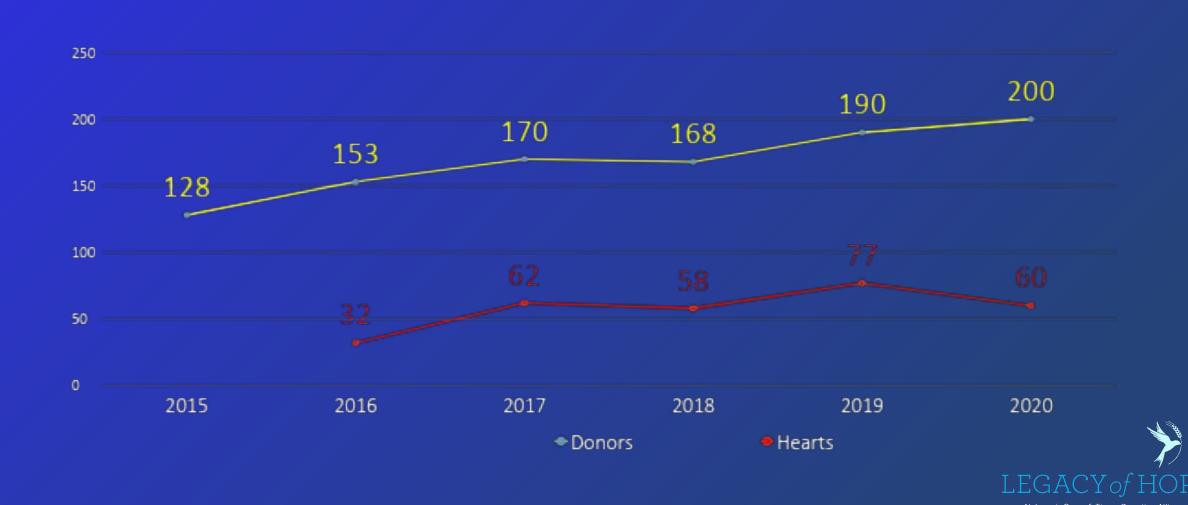
- 7. Calculate Optimal PEEP
 - a. Set PEEP
 - b. Press Inspiratory Hold
 - c. Chart static compliance
 - d. Change PEEP by increments 1-2 and repeat b & c


PEEP	Compliance	
5		
6		
7	(0)	
8	j	
9	82	
10		
11	j	
12		

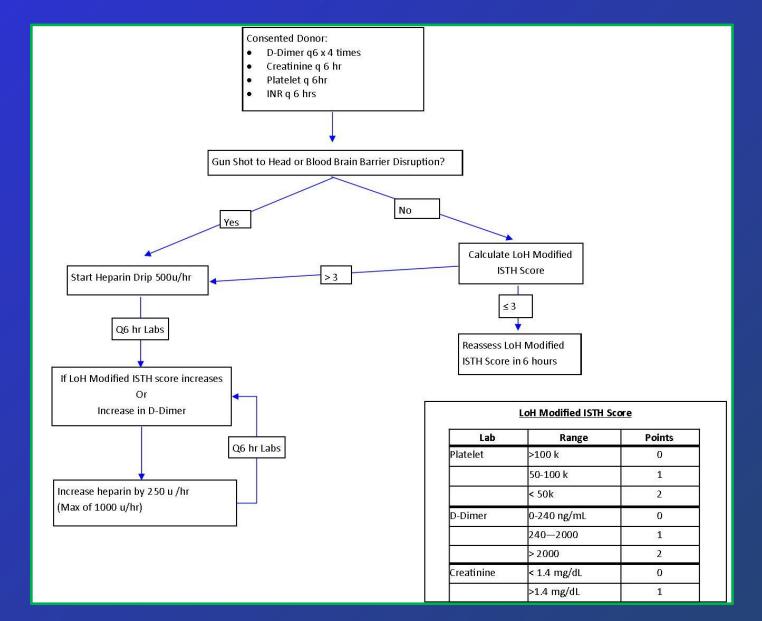
Alabama's Organ & Tissue Donation Alliance

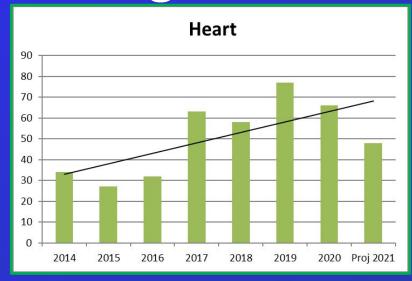
Pulmonary

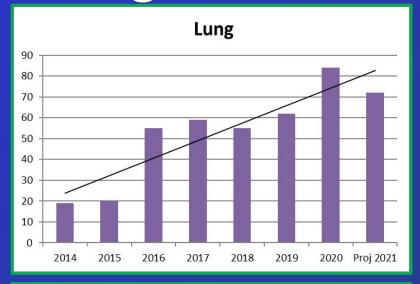


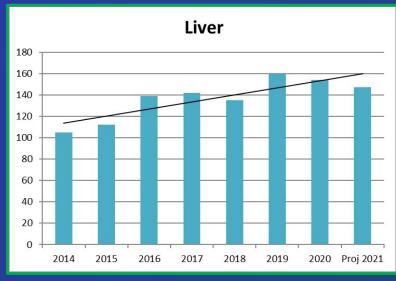

- Cardiac
 - PTC and I pulled heart data
 - Heart Declines:
 - LVH
 - CADz
 - Other diseases (Hep C)
 - Poor EF—Neurogenic stunned myocardium
 - Neurogenic stunned myocardium
 - Chart review: young males and middle age females

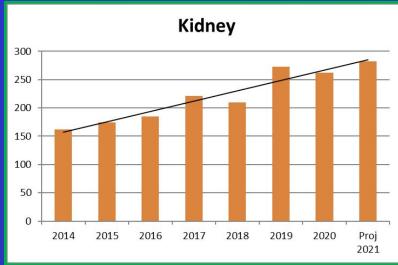
- Cardiac
 - Basic science work
 - Looking into pathology behind neurogenic stunning
 - Basic science of estrogen with Irshad Chaudry
 - 2017 began estrogen protocol
 - 32 hearts □ 58 hearts in one year
 - 2019: estrogen + heparin protocol
 - 77 hearts

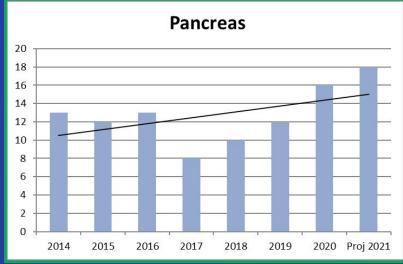

- Kidneys
 - Project started in 2018
 - "Cool Beans Protocol"
 - Passive hypothermia 34-35 C
 - Low dose dopamine
 - Mid-year review of data: still underperforming as compared to other OPO
 - Reviewed renal biopsies
 - Microvascular thrombosis □ DIC

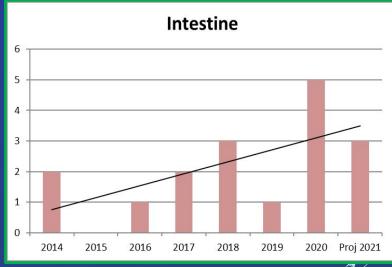

- Kidneys
 - Last half of 2018:
 - Followed D-dimer, platelet, fibrinogen, INR, split products
 - Strongest correlation: platelet, D-dimer, creatinine
 - LOH Score


Lab	Range	Points
Platelet	>100k	0
	50-100K	1
	< 50K	2
D-Dimer	0-240 ng/mL	0
	240 - 2000 ng/mL	1
	> 2000 ng/mL	2
Creatinine	< 1.4 mg/dL	0
	> 1.4 mg / dL	1









Brain Death: Turning Tragedy into Opportunities

- The Need is Great
- So many steps can make a difference
 - Recognition of the Potential
 - Timely referral
 - Care of the patient
 - Care of the patient progressing
 - Care of the family during the process
 - Organ donor management—my team and I wouldn't have that chance if not for you

Brain Death: Turning Tragedy into Opportunities

Questions

