

## **Alzheimer's Disease Update**

Erik D. Roberson, MD PhD Rebecca Gale Endowed Professor of Neurology Director, Alzheimer's Disease Research Center Director, Center for Neurodegeneration and Experimental Therapeutics

#### Outline

- **1.** What causes Alzheimer's disease?
- How do we accurately diagnose Alzheimer's disease? (now and in the near future)
- **3.** How do we optimally treat Alzheimer's disease? (now and in the near(?) future)



#### **Auguste Deter (1850–1901)**

Delusions, memory loss around age 50 Evaluated by Dr. Alzheimer 1901 Aphasic dementia, sundowning, agitation Autopsy by Dr. Alzheimer 1906 Plaques & Tangles

## Plaques 1906 Tangles







# What causes Alzheimer's disease?

Aging

Genetics

Aβ (amyloid hypothesis)

#### Aging of the U.S. Population





#### **Genes Causing Autosomal Dominant AD**

| Gene  | Protein                   | Function                        |
|-------|---------------------------|---------------------------------|
| APP   | Amyloid Precursor Protein | Contains Aß peptide             |
| PSEN1 | Presenilin 1              | Cleaves A <sub>β</sub> from APP |
| PSEN2 | Presenilin 2              | Cleaves A <sub>β</sub> from APP |

Net effect of APP/PSEN mutations is increase in toxic A $\beta_{42}$  production





Alzheimer's Disease Education and Referral Center, a service of the National Institute on Aging

https://www.youtube.com/watch?v=NjgBnx1jVIU

#### **Genetic Risk Factors for Alzeimer's Disease**



#### Late-onset vs. Early-onset AD

- Late Onset (LOAD)
  - Onset age 65 or older
  - 6.5% of elderly population (6500/100,000)
- Early Onset (EOAD)
  - Onset age 60 or before
  - 40/100,000
  - Can be autosomal dominant (5/100,000)
    - Usually onset in 40s
  - Most cases due to genetic risk factors, often in combination



#### **ApoE** is the Strongest Genetic Risk Factor for AD

Median Age at Onset

3/3: 84 years old

3/4: 75 years old

3/3: 70 years old



#### **Structural Differences Between E3 and E4**



#### Change in structure and function is profound.

Image from Robert Mahley, MD, PhD of the Gladstone Institutes. <u>http://gladstoneinstitutes.org/node/11371</u>



## **Genetic Testing for ApoE**

NIA does not recommend routine ApoE testing

- Psychological distress
- Insurance or employment discrimination
- Inadvertent effects on family members
- Only a risk factor, but genetics connotes determinism
- Long time between testing and disease
- Not modifiable



# The Amyloid Hypothesis: that Aβ is a primary driver of AD

- Genetic evidence
  - Autosomal dominant mutations: all increase  $A\beta$
  - Protective variants in APP that decrease Aβ production reduce AD
- Experimental evidence
  - A $\beta$  has toxic effects on cultured neurons and in animal models
- Clinical trial evidence
  - Signals that reducing A $\beta$  has beneficial effects in AD trials



# How do we diagnose Alzheimer's disease?

MCI vs. Dementia

Clinical syndromes vs. Pathologic diagnoses

Biomarkers

## **Step 1: Syndromal Staging**

#### MCI vs. Dementia

| Normal | MCI                     | Dementia                   |
|--------|-------------------------|----------------------------|
|        | Cognitive<br>Impairment | + Functional<br>Impairment |



## **Diagnostic Criteria for MCI and Dementia (2011)**

#### MCI

- Concern of cognitive change (i.e., historical or observed evidence of decline over time)
- Objective evidence of impairment in one or more cognitive domains
- Preservation of independence in functional abilities
- Not demented

#### Dementia

Cognitive or behavioral symptoms that:

- Interfere with work or ADLs
- Cause a decline from prior level of functioning
- Are not explained by delirium or psychiatric illness
- Are detected by both subjective (history) and objective (exam) methods
- Involve at least two domains
  - Memory, Executive, Visuospatial, Language, Neuropsychiatric

#### **Step 2: Clinical classification Step 3: Pathological prediction**

#### Clinical classification

- Clinical syndromes based on symptom profile
- Symptoms are driven by *location* of pathology
- For example
  - Amnestic Alzheimer's disease: medial temporal lobe
  - Primary progressive aphasia: left language cortex
- Pathological prediction
  - Pathological diagnoses based on *type* of pathology (e.g., tau, TDP-43, Aβ, αSyn)
  - Ultimately, made postmortem by pathologist
  - Can be predicted based on clinical classification and biomarkers

#### **Diagnostic Criteria for Dementia due to AD (2011)**

- Dementia, with these characteristics:
  - Insidious (slow) onset
  - Clear-cut history of worsening
  - Initial and most prominent deficits are:
    - Amnestic: memory
    - Nonamnestic: Language, visuospatial, or executive
- No substantial concomitant vascular disease, or feature of other neurodegenerative disorders that could explain the symptoms

#### **Clinical Syndromes with AD (Plaque/Tangle) Pathology**

**Classic Amnestic AD** 

Medial temporal predominance of pathology

Episodic memory deficits (recent worse than remore)

ApoE4 association

Logopenic Primary Progressive Aphasia

Left frontal/temporal predominance of pathology

Word-finding problems, slower speech

Posterior Cortical Atrophy

Posterior cortical predominance of pathology

Blurred vision, difficulty reading, misperceiving visual stimuli



#### **Clinical Syndromes with non-AD Pathology**

| Semantic Variant<br>PPA (svPPA)                               | Nonfluent Variant<br>PPA (nvPPA)                                                      | Dementia with<br>Lewy Bodies (DLB)                                                                                                                                                                                                                      |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fluent speech<br>Loss of word<br>meanings<br>Surface dyslexia | Nonfluent, effortful<br>speech<br>Loss of grammatic<br>structure                      | Parkinsonism<br>REM Sleep<br>Behavior disorder<br>Visual hallucination<br>Fluctuations                                                                                                                                                                  |
| Left temporal pole                                            | Left frontal                                                                          | a-Synuclein                                                                                                                                                                                                                                             |
| TDP-43 pathology                                              | Tau pathology                                                                         | pathology                                                                                                                                                                                                                                               |
|                                                               | <section-header><text><text><text><text></text></text></text></text></section-header> | Semantic Variant<br>PPA (svPPA)Nonfluent Variant<br>PPA (nvPPA)Fluent speech<br>Loss of word<br>meanings<br>Surface dyslexiaNonfluent, effortful<br>speech<br>Loss of grammatic<br>structureLeft temporal poleLeft frontalTDP-43 pathologyTau pathology |

#### AT(N) Framework: Biologically based AD criteria (2018)

|                             | Α                                                       | Τ                                  | (N)                     |
|-----------------------------|---------------------------------------------------------|------------------------------------|-------------------------|
| Measuring                   | Aggregated A <sub>β</sub>                               | Aggregated Tau                     | Neurodegeneration       |
| CSF (state)<br>biomarker    | $\downarrow A\beta \text{ or } A\beta_{42}/A\beta_{40}$ | ↑ P-Tau                            | ↑ T-Tau                 |
| Imaging (load)<br>biomarker | Amyloid PET ligand binding                              | Cortical Tau PET<br>ligand binding | FDG PET,<br>MRI atrophy |



#### CSF Aβ (A) and Tau (T) in Combination

 $\downarrow A\beta \text{ or } A\beta_{42}/A\beta_{40} \qquad \qquad \uparrow P-Tau$ 





#### New blood-based biomarkers for AD are coming



## **PrecivityAD (A) now available**

- Amyloid Probability Score (APS) based on
  - Plasma Aβ ratio
  - APOE genotype

• Age



## **Amyloid PET (A)**

- Clinically available since 2012 (multiple F18 tracers)
- Not reimbursed by insurance so rarely ordered



#### Tau PET (T): Research only for now



#### Structural MRI: hippocampal atrophy (N)



## FDG PET: cortical hypometabolism (N)

- <sup>18</sup>F-<u>F</u>luro<u>d</u>eoxy<u>g</u>lucose
- Marker for metabolically active brain regions
- Posterior cortical hypoactivity typical in AD



#### Timing of Amyloid and Tau in AD







# How do we treat Alzheimer's disease?

Cholinesterase inhibitors and memantine

Lifestyle changes

Disease-modifying therapies?

#### **FDA-Approved AD Therapeutics**

- Acetylcholinesterase Inhibitors
  - Donepezil (1996)
  - Rivastigmine (1997)
  - Galantamine (2000)
- NMDAR Antagonist
  - Memantine (2003)
- Namzaric (2014)
  - Donepezil + Memantine



#### **AChE Inhibitors: Short-term Benefit in AD**



At the end of 1 year, all three show no statistically significant decline from baseline on cognitive tests in mild-moderate AD px.

Winblad, 2001 Bloom, 1998 Raskind, 2000

#### **AChE Inhibitors: Long-term Decline Resumes**



Courtney, 2004



#### **NMDAR Antagonist for AD (memantine)**

Goal: Reduce excitotoxic calcium influx through NMDARs





#### Memantine: Short-term Benefit in AD (<13 MMSE)



Reisberg, 2003 and at BIRMINGHAM

#### **Other Treatment Strategies for AD**

#### **Pharmacological**

SSRIs, esp. citalopram

Atypical antipsychotics

Exercise Mental activity Diet Sleep CV Risk factor reduction Hypertension Cholesterol

Lifestyle







#### Aducanumab: the next AD drug?







#### **Brain Aging and Memory in the South**



- NIA-funded network of AD research centers
- Theme: Deep South disparities
- Focus: Black or African American recruitment

alz@uabmc.edu



#### **Take Homes**

**1.** Early onset AD is often genetic, but not usually autosomal dominant

- Genetic risk factors, especially *APOE*
- 2. AD pathology starts decades before symptoms, and can be detected by clinically available biomarkers
  - Amyloid PET, CSF Aβ/Tau, blood-based biomarkers
- **3.** Cholinesterase inhibitors and lifestyle modifications are first-line treatment recommendations
  - SSRI's often helpful; Memantine in more advanced dementia
- 4. The era of disease-modifying treatments for AD is near
  - Amyloid immunotherapy likely will be first

